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1. Cryogenic’ Proper t ies  of Solids 

1 .1  Thermal  Conductivity of Solids 

1.1. 1 General Comments 

The objectives of this program a r e  (1) to measu re  the 

the rma l  conductivities of s eve ra l  aerospace alloys and standard r e f e r -  

ence mater ia l s ,  and (2)  to study the Lorenz rat io  of severa l  c l a s s e s  of 

materials, par t icular ly  those which a r e  elemental  to s t ruc tura l  m a t e r  - 
ials. Temperature  range of study is 4 t o  300 K. 

During the reporting period, the program was te rmina-  

ted by the sponsor’ except for  the completion of task 2. 

t he rma l  conductivity measurements  are funded. 

No fur ther  

Personnel  contributing during the reporting period 

were  J. G. Hust and L. L. Sparks.  

1. 1.2 P r o g r a m  Status 

The Lorenz ra t io  compilation will be completed a few 

weeks later than anticipated. 

e r r o r s .  

and printed as an NBS publication. 

forthcoming quar te r .  

1 .2  The rma l  Expansion 

D a t a  a r e  now being cross-checked for  

Upon completion of the cross-check, the data  will be plotted 

This will  be accomplished in the 

1.2. 1 General  Comments 

The objective of this project  is to  measu re  the low 

tempera ture  thermal  expansion of mater ia ls  required by the NERVA 

program. During the reporting period, the work was terminated by 

the sponsor’. 

Termination of the above programs resulted f rom a redirection of 
effort  associated with U. S. nuclear rocket development. 



2. Slush Hydrogen Heat T rans fe r  and Hydrocarbon Suspension 

2 . 0  General Comments 

During this reporting period, activit ies have been concerned 

with experiments of heat transfer to s lush  hydrogen. 

suspension experimental  work is complete. 

hydrocarbon suspension work will be included with the repor t  on hea t  

t ransfer .  

The hydrocarbon 

The final repor t  of the 

Personnel contributing to the program during this reporting 

period were C. Sindt, G. Suenaga, and J. Hord. 

2.1 Slush Hydrogen Heat Transfer  

The apparatus used for heat  t ransfer  experiments is the 

same  basic sys t em that was used for  hydrocarbon suspension work. 

The experimental vessel  is a 10 c m  diameter  dewar approximately 

30 c m  deep. 

is filled with liquid hydrogen and pumped to  a p r e s s u r e  corresponding 

to the experimental p ressure .  

with liquid nitrogen in a surrounding 25 c m  diameter  dewar. 

This dewar is enclosed in a 15 c m  diameter  dewar which 

The bath dewar is thermally shielded 

The heat t ransfer  unit is mounted in  the 10 c m  diameter  

experimental dewar on a 0.95 c m  stainless  s tee l  thin-wall tube. 

2. 1. 1 Slush Hydrogen Heat Transfer  Unit 

The heat t ransfer  unit consis ts  of a 2. 54 c m  diameter  

cylindrical block of electrolytic tough pitch copper. 

1.9 c m  long and i s  dril led in s ix  places to accept carbon r e s i s to r s ,  

which a r e  embedded in a high thermal  conductivity epoxy. 

connected in paral le l  and have a resis tance of 13.865 ohms at 20 K. 

The cylinder is 

They are 

Soldered to the undrilled face of the copper cylinder is a 

0. 05 mm thick s ta inless  s tee l  sheet, the heat  t ransfer  surface.  

hea t e r  block i s  vacuum jacketed except at the heat t ransfer  surface.  

The 

2 



The s ta inless  s teel  sheet extends across a 3 . 1  m m  space between the 

hea ter  and the vacuum jacket and is soldered to the jacket, thus pro-  

viding the vacuum seal. 

In the center of the heater cylinder, 0.25 mm below the heat 

t r ans fe r  surface,  is a thermocouple, embedded in a low melting tem- 

pera ture  metall ic eutectic to assure  good thermal  contact. A second 

thermocouple is s imi la r ly  mounted at  a radius of 1.96 cm, centered 

between two of the resis tance heaters.  

An a r r a y  of twelve thermocouples extends out f rom the heater  

surface,  spaced at  approximately 1.1 mm intervals.  Four  of the 

thermocouples a r e  located on the heater center  line, four at  about 1/2 

the heater  radius,  and the other fou r  at  the heater  edge. 

thermocouples a r e  Chrome1 vs. gold (0.07 atomic percent iron). 

All of the 

The mounting tube for the heater  i s  used a s  the vacuum pump- 

ing line and a good insulating vacuum is maintained at  all  t imes.  

tube is also used as the conduit for the power leads and the voltage 

measurement  leads for a distance of about 30 cm. 

therefore  in a vacuum environment within the experimental vessel .  

The leads pass  through a hermetic sea l  at  the top of the experimental 

vesse l  and a re  then enclosed in a second tube about 1 m long (filled 

with helium gas). 

is submerged in the hydrogen. 

hydrogen bath intercepts all of the heat t ransfer red  down the leads 

before it en ters  the experimental vessel or the heater unit. 

This 

The leads a r e  

This tube is coiled in the hydrogen bath dewar and 

Submerging the assembly in the pumped 

A second thermocouple a r r ay  was initially located at  the s u r -  

face in the experimental vessel ,  but it in te r fe r red  with s lush prepara-  

tion. Also, it was not useful as the surface temperature  remained the 

same  as  the bulk temperature  in all but one of the experiments.  In 

this experiment, the surface liquid thermal  stratification data were 

3 



not meaningful as  they were  dependent on the frequency of s lush  p re -  

paration and this was a random occurrence depending on many other  t e s t  

operations. 

2. 1 .2  Heat Transfer  Tes t  Procedure  

Four  types of tes t s  have been conducted using three  

orientations of the hea ter  surface. 

t r ans fe r  at one atmosphere p r e s s u r e  in liquid at normal-boiling tem-  

perature ,  2 )  heat  t ransfer  at triple-point p r e s s u r e  in liquid, 3 )  heat  

t ransfer  at tr iple-point p re s su re  in sett led s lush (estimated sett led 

solid fraction of 0.45), and 4)  heat  t ransfer  in settled s lush at one 

atmosphere p r e s s u r e  using helium gas as the pressurizing gas.  The 

three orientations of the surface were  horizontal  facing up, ver t ical ,  

and horizontal facing down. 

The four tes t s  were: 1) heat 

The tes t  procedure for  the th ree  orientations of the hea ter  was 

identical for each of the four types of tes ts .  

F o r  the tes t  at one atmosphere p re s su re  of normal-boiling 

liquid, the ent i re  volume of liquid was brought to temperature ,  in- 
2 

cluding the bath, by controlling the p r e s s u r e  a t  101. 3 * 0. 3 kN/m 

(760 t o r r )  with a barostat .  

in pressure  occurred during mixing and until bubbles formed and did 

not collapse near  the dewar bottom. Thermocouples were  then read 

for  a base point. Power was supplied to the heater  with a d-c  power 

supply which maintained voltage constant within * 0.2%. The voltage 

at the heater  w a s  recorded as  well as the voltage drop  ac ross  a 

calibrated r e s i s to r  in s e r i e s  with the hea ter  power leads.  

w a s  calculated f rom the voltage and cu r ren t  (calculated) a c r o s s  the 

calibrated res i s tor .  

t imes and recorded automatically on magnetic tape with a data  acquisi-  

tion system. 

The liquid was then mixed until no change 

The power 

The thermocouple signal was amplified 1000 

P r e s s u r e  was maintained at the s e t  value using the 
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barostat ,  while the voltage to the heater was increased in s teps  to 

cover  the heat  t ransfer  range f rom 0.002 W / c m  

the boiling regime changes f rom nucleate to film (burn-out). 

heating r a t e  was increased in  s teps  to maximum, then decreased in 

s teps  to  determine hys te res i s  effects, i f  any. 

2 to the point where 

The 

The procedure for  tes t s  of triple-point liquid was to pump the 

dewar p r e s s u r e  to triple-point and maintain it at triple-point using 

the baros ta t  for  p re s su re  control. 

similar to the procedure for testing normal-boiling liquid. 

The remainder  of the t e s t  was 

The procedure for  heat t ransfer  to s lush at triple-point 

p r e s s u r e  was to prepare  s lush in  the experimental  dewar using the 

freeze-thaw method until the dewar was filled with settled slush. 

p r e s s u r e  was then maintained at triple-point during the test. 

was increased and decreased during the tes t ,  as it was for the liquid 

tes t s ,  but burn-out was not defined, as the solid in the s lush would 

not last long enough to determine the burn-out heat  r a t e  with any c e r -  

tainty. 

the same as for  triple-point liquid. 

The 

Heat 

Therefore ,  the maximum heat r a t e  used in  the s lush t e s t s  was 

F o r  the s lush pressurized to one atmosphere pressure ,  the 

procedure was similar, except that af ter  s lush preparation and pr ior  

to adding heat, the p re s su re  was raised to one atmosphere by intro- 

ducing cold helium gas  and the pressure  was maintained during the 

test .  

t es t s  was not saturated with helium gas. 

This tes t  was always run las t  so that the liquid used in the other 

F o r  both s lush hydrogen t e s t s ,  the s lush had to be replenished 

frequently, thus interrupting the increasing o r  decreasing heat rate.  

To keep the data  consistent af ter  slush preparation, the heat  r a t e  was 

always increased f rom a l e s s e r  value during the increasing heat  flux 

t e s t s  and was decreased f rom an arb i t ra ry  l a r g e r  value during the 
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decreasing heat flux tes t s .  

had to be prepared pr ior  to each flux t e s t  point to a s s u r e  adequate 

s lush depth over the heater  during the data  taking pcriod. 

During the higher heat flux tests, s lush 

The thermocouplc used for  an absolute tcmpera ture  rcferc.nce 

In this location, was located at the bottom of the experimental  vessel .  

the absolute temperature  was known for  each test - as the thermo-  

couple was below the heater ,  it remained in normal-boiling liquid 

during the normal-boiling liquid tes t s ,  and during the t r iple  -point 

liquid tests,  it remains  in triple-point tempera ture  liquid. During 

the s lush  tes t s ,  the thermocouple was always surrounded by s lush  so  

i t  was at triple-point temperature .  

2. 1. 3 T e s t  Results 

Data have been taken for  the four types of experiments 

using all three orientations of the heat t r ans fe r  surface.  

for  the surface facing up have been reduced to the fo rm of heat t r ans fe r  

r a t e  per  unit a r e a  versus  the difference between the heater  block tem-  

pera ture  and the bulk hydrogen temperature .  

in figure 2.  1.1; they have not been cor rec ted  for  temperature  drop 

a c r o s s  the 0. 05 mm stainless  s tee l  sheet  o r  for  surface heat l o s s  due 

to  the fin effect of the s ta inless  s tee l  sheet  that extends beyond the 

copper block to the vacuum jacket. 

but they will be made in the final data  analysis;  therefore,  the data  

presented in figure 2. 1. 1 are preliminary.  

The data  

These data  are presented 

These correct ions a r e  both small 

F o r  the purpose of comparison, a curve f rom Cooling and 

Mertel  is shown for the same  configuration of hea t  t r ans fe r  unit at  a 

p r e s s u r e  of 117 kN/m 2 
(878 tor r ) .  Agreement is reasonable over the 

Cooling, K. J. and Merte J r . ,  H., Incipient and nucleate boiling of 
hydrogen, ASME Pape r  No. 68-WA/PID-4, Presented a t  ASME 
Winter Annual Meeting, New York, N o  Y. (Dec. 1-5, 1968). 
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range of data presented for the case  of increasing heat flux. However, 

the hysteresis  effect shown in the data  for decreasing heat f l u x  was not 

present  in Cooling and Merte 's  work with a polished s ta inless  s tee l  

surface.  

effect s imilar  to the data  shown by closed symbols, however. 

point where vapor first appears on the surface occurs  when the curve 

changes slope and also is in agreement with Cooling and Merte 's  exper-  

imental  results. N o  data a r e  available for  reasonable comparison with 

the other three curves.  

Their  values fo r  rougher surfaces  did indicate a hys te res i s  

The 

Decreasing heat  flux data  for triple-point liquid, t r iple  -point 

slush, and s lush at one atmosphere p re s su re  a r e  not shown as they 

did not have hysteresis  effects (even though, in the case  of the t r iple-  

point liquid, vapor s i tes  were  visible down to a temperature  difference 

of 1 K).  

Vapor became visible in the triple-point p re s su re  s lush on 

As increasing heat flux at the point where the curve changes slope. 

the hea t  flux was increased and m o r e  vapor bubbles formed, local 

mixing of the slush occurred over the heat t ransfer  surface as the 
2 bubbles rose in the liquid. 

hea t  flux. In the slush pressurized to one atmosphere,  no bubbles were  

ever  observed even though the curve does change slope as  do the o thers ;  

however, vapor may have formed and collapsed very  close to  the surface 

and not been visible. 

vapor bubbles did not remain and t rave l  to the surface,  no mixing 

occurred at this  condition. 

This mixing commenced at about 1 .5  W/cm 

Visibility in the slush is very limited. Because 

The data  for  the other two orientations of the heater  unit are 

being reduced to curves  similar to those shown in figure 2.1.1 and 

will be presented in the next progress  report .  Also, reduced data  

I f rom the thermocouple a r r a y  will be presented. 

8 



3. Solid Hydrogen Studies 

3 . 0  General Comments 

Personnel  contributing during this period were  D. E. Daney, 

R.  0. Voth and L. M. Anderson. 

3.1 Experimental  

A detailed design of the hydrogen freezing apparatus has been 

completed and a number of the components have been procured o r  fabr i -  

cated. 

liquid nitrogen shield dewar and plexiglass safety shield will be used, 

but a r e  deleted f r o m  this drawing to avoid confusion. 

features  a re :  

An assembly drawing is shown in F igure  3.1. 1. An additional 

The basic 

3.1.1 Hydrogen System 

1. A hydrogen freezing chamber  (bottom). The walls 

of that  chamber  will  be made of 0.005 inch Mylar to  minimize 

thermal  res is tance while allowing a c l ea r  view of the f r eez -  

ing hydrogen. 

2 .  A standpipe located above (and connected to) the 

freezing chamber ,  to se rve  as a liquid hydrogen r e se rvo i r  

during freezing. 

capacitance level  gage, will provide an indication of the 

reduction in volume of the hydrogen in the freezing chamber.  

F r o m  this liquid level reading, the mass of hydrogen 

solidified and the r a t e  of freezing at a given t ime can be 

determined. 

of the heat flux. 

solid hydrogen blockage of the pas sageway leading into 

the freezing chamber.  

The fall in liquid level, as indicated by the 

The freezing r a t e  will provide one indication 

A heater on the standpipe will prevent 
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Legend f o r  F igure  3.1.1: 

1. 

2 .  

3 .  

4. 

5. 

6. 

7. 

8. 

9 .  

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

2 6. 

2 7. 

2 8. 

Helium Blower Motor. 

Helium Blower Shaft. 

Liquid Hydrogen Radiation Shield. 

Helium Blower Impeller. 

Internal Gear.  

Helium Flow Control Valve. 

Liquid Helium Bath. 

Direction of Helium Gas Flow. 

Heater. 

6-Inch I. D. Py rex  Dewar. 

Flow Meter (Venturi in Final  Design). 

Dewar Vacuum Space. 

Heat Exchanger (4-1 / 8  0. D. x 0.095 inch wall  copper tube with 
3 / 8  inch fins at 1 /4  inch spacing outside, ribbon packing inside). 

Fill Line Heater. 

Co -Axial Capacitor Leads.  

Vacuum or He Transfer  Gas. 

Fill Line. 

Standpipe with Concentric Tube Capacitor for  Liquid Level Meas. 

Vacuum. 

Liquid Hydrogen. 

He ate r. 

4-Inch Pyrex  Dewar W i t h  Stainless Steel-to-Pyrex Joint. 

Foam. 

P y r e x  Baffle. 

Germanium Thermometer .  

Gold Iron vs.  Copper Differential Thermocouple (Typical). 

F r e e zing H yd r og en. 

82 mm 0. D. x 0. 005 Inch Mylar Cylinder. 

10 



F i g u r e  3.1.1 Hydrogen F r e e z i n g  Apparatus 

iOa 



3.  A hydrogen chamber at the upper end of the appara-  

tus to act  as  a radiation shield and a source  of precooling 

refr igerant .  

3. 1 . 2  Helium Refrigerant System 

1 .  The liquid helium bath will provide the refr igerat ion 

for  freezing the hydrogen. 

2. The variable speed blower will circulate helium 

heat  exchange gas by variable paths as indicated by the a r rows  

in F igure  3. 1 .  1 .  

3.  A ro ta ry  valve at the blower discharge allows a 

choice o r  combination of two possible paths for the helium 

gas,  thus controlling the helium gas  temperature  and the 

freezing rate: F o r  maximum refrigeration, all of the 

flow may be diverted through the ribbon packed heat  ex-  

changer communicating with the liquid helium bath. 

minimum refrigeration, the flow m a y  be routed through the 

inner passage which is insulated f r o m  the liquid helium bath. 

This passage is also provided with a heater  to enable thawing 

the hydrogen. 

obtained by splitting the helium gas s t r e a m  in any proportions 

de s i red.  

3. 1. 3 

F o r  

Intermediate degrees  of refr igerat ion may  be 

Hydrogen-to-Helium Gas Heat Exchange System 

Cold helium g a s  is routed around the outside of the 

pyrex baffle, then upward next to the freezing chamber.  Refrigeration 

is res t r ic ted ,  as far a s  possible, to the ver t ical  walls of the freezing 

chamber  by means  of the foam insulating blocks and vacuum jackets 

surrounding the liquid and gaseous hydrogen containers.  

1 1  



3. 1.4 Helium Gas Flow Measurement  

Jus t  before helium gas  r e -en te r s  the circulating 

blower, it wi l l  pass  through a meter ing orifice.  The measured  flow 

ra te  combined with temperature  measurements  ups t ream and down- 

s t r e a m  of the freezing chamber will allow a second determination of 

freezing heat  flux. 

3. 1. 5 Instrumentation 

1 .  Germanium thermometer ,  designated T in 
0 

Figure  3. 1 . 1 ,  for  absolute tempera ture  indication in helium 

g a s  s t r e a m  downstream of the freezing chamber.  

couple reference junction also will be located at this point 

for use in differential temperature  measurements  a t  other 

points. 

A thermo-  

2 .  Gold (0.07 at. 70 I ron)  vs. Copper junctions: 

No.  1 - inside freezing chamber  wall t empera ture ;  no. 2 - 
freezing chamber  center  tempera ture ;  no. 3 - standpipe exit 

temperature;  no. 4, 5, and 6 - helium gas tempera ture  

difference ups tr eam -to -downs t r e a m  of freezing chamber  . 
3. 

4. 

A hydrogen liquid level  capacitance gage. 

Helium gas flow orifice upstream and downstream 

p res su re  taps. 

3.1. 6 Photography and Visual Observation 

These will be important for  determining the c la r i ty  

and uniformity of solid hydrogen formation. 

seven pyrex walls,  the Mylar freezing chamber ,  plexiglass shield, 

and the helium and nitrogen baths presents  some problems; however, 

good quality motion pictures  have been achieved under similar condi- 

tions at this laboratory.  

Photography through the 
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3.1.7 Components which have been Fabricated o r  Procured  

1 .  Al l  par ts  of thc liquid hydrogen standpipe including 

thc capacitancc gage. 

2. 

3. The pump assembly including impeller,  diffuser, 

shaft, and motor have been procured f r o m  an outside vendor. 

4. The hydrogen radiation shield vesse l  and top 

The helium liquid-to-gas heat  exchanger. 

mounting plate have been assembled. 

5. The three pyrex dewars  and pyrex baffle have 

been procured. 

4. Slush Hydrogen Instrumentation 

4 .0  General  Comments 

Contributing to the program during this reporting period was 

R. S. Collier. 

4 . 1  Therma l  Oscillations 

The final repor t  on thermal oscil lations has been completed 

and is now in press .  

planned to excerpt  various sections for  publication in severa l  technical 

journals.  

It will be available in the next quarter ,  and it is 
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5. Consultation and Advisory Services  

5.0 General Comments 

Contributing personnel w e r e  J. Hord, P. R.  Ludtke and 

A. F. Schmidt. 

5.1 NERVA P r o g r a m  

On February  28, discussions w e r e  held with D. J. Miller 

(SNSO-Hq), E. H. Hyde and H. Attaya (NASA-MSFC) on the r ed i r ec -  

tion of NERVA contract work and the increased emphasis  of NBS 

efforts on the MSFC Slush Hydrogen Flow Faci l i ty  ( see  Section 5.2). 

Our  services  have also been offered to  the Los Alamos N-Division 

in whatever manner deemed beneficial to the LASL nuclear propul- 

sion program. 

At the request  of the sponsor,  a r epor t  entitled "Solid Hydrogen 

as a Space Storable Propellant - A Pre l iminary  Study'' has been p r e -  

pared and i s  appended to this progress  report .  

5 .2  MSFC Slush Hydrogen Flow Faci l i ty  

Several  l e t te rs  have been sen t  to L. Worlund, Z. Adamson, 

and B. Far ley  giving advice on p res su re  and helium purge taps,  

valve s tem leakage problems and s e a l  design, and design c r i t e r i a  

for  indium coated O-ring seals .  

On February  17, P. Ludtke attended a meeting at the NASA- 

Marshal l  Space Flight Center  with E. H. Hyde, T. Marshall ,  B. 

Farley, and D. Hutson to d iscuss  problem areas of the MSFC slush 

flow facility. Detailed drawings of an NBS recommended p res su re  

tap, a pressure  relief tap, a helium inerting tap, a valve bonnet 

seal, and a t ransfer  line see- thru section with sapphire windows were  

provided by Ludtke and discussed at the meeting. Design information 

and c r i t e r i a  f r o m  the above drawings will be used in  designing the 

s lush t ransfer  line piping for  the MSFC flow facility. In addition, 
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P. Ludtke has been working on thc design of a slush hydrogen generator  

to  be incorporatc:d into thc: MSFC flow facility. 

cations for  the v c s s c l ,  including s t i r r ing  motor  inonnt and window 

assembl ies ,  arc k i n g  prepared. 

Drawings  and spcxcifi- 
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SOLID HYDROGEN AS A SPACE STORABLE PROPELLANT 

- -  A PRELIMINARY STUDY 

J. Hord 

1. INTRODUCTION 

Because of i t s  low molecular weight, high heat capacity, and 

high specific heat ratio,  hydrogen is the propellant chosen for  a 

var ie ty  of chemical and nuclear rocket vehicle applications. 

long been recognized [ 1,21 that subcooled liquid hydrogen, s lush 

hydrogen, and solid hydrogen can extend the duration of space missions.  

By subcooling liquid hydrogen, o r  solidifying a portion of it, the pro-  

pellant bulk density and heat capacity a r e  increased,  result ing in 

significant payload advantages. 

is predictable only for  specific mission requirements;  however, it 

is apparent that increasing propellant bulk density and heat capacity 

can  1) inc rease  thrust-to-weight ratio, 2 )  extend mission duration, 

and 3 )  reduce in-orbit  o r  refuel station s torage sys tem weight. 

lated advantages a r e  reductions in tank insulation requirements ,  tank 

venting frequency, tank s ize  and weight, and possibly increased vehicle 

reliability. 

It has  

The exact extent of these advantages - 

Re- 

As always, we must  be willing to sacr i f ice  something to obtain 

the benefits of the higher density hydrogen - -  in this case it is ease  of 

handling. 

ground-launch by vacuum pumping. 

safely, with minimal  effort and sacr i f ice  in  ease  of handling. 

site preparation of s lush  hydrogen is somewhat m o r e  complicated and is 

The subcooled liquid hydrogen can be prepared pr ior  to 

This  operation could be conducted 

Launch- 

t numbers  in brackets indicate references at the end of this  paper. 
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not yet s ta te-of- the-ar t  technology; however, laboratory-sized facil i-  

t i es  have proven feasible [3], and a la rge-sca le  s lush generating and 

flow facility is scheduled f o r  operation at MSFC in the la t te r  pa r t  of 

1972. 

quire  some s o r t  of mixing device, i. e.,  to take full advantage of the 

increased heat  capacity all heat leak ( thermal  energy) m u s t  be mi- 

formly distributed throughout the fluid. 

In low g environments subcooled liquid and s lush  hydrogen re- 

Recently, there  has been some discussion on the feasibility of 

Such using solid cryogen propellants in cer ta in  vehicle applications. 

propellants, thawed upon demand, could conceivably be used as 

s t ruc tura l  members  [4], result ing in g rea t e r  reductions in vehicle 

weight. Solid hydrogen offers  the ultimate in bulk density and heat 

capacity for hydrogen-propelled nuclear and chemical rockets.  

sequently, solid hydrogen -- as compared to liquid o r  s lush  hydrogen - -  
offers the maximum storage life in ear th / lunar  orbi t  and space-journey 

propellant tanks. 

vantages a r e  readil? apparent, e. g. ,  reduction in over-board vent 

l o s ses ,  reduced sloshing effects and possibly use of the solid hydrogen 

as  a load-bearing mater ia l .  

to some extent by the necessi ty  to thaw the solid hydrogen, upon 

demand, at a controllable ra te .  Thawing techniques, using chemical 

o r  nuclear energy, will have to be optimized and present  a design 

challenge. 

modular contained units, e. g. ,  a shuttle cargo  tank filled with a 

monolithic block of solid hydrogen. 

Con- 

Certain propellant management and s t ruc tu ra l  ad- 

These advantages will be compromised 

It is anticipated that the hydrogen should be frozen in 

A preliminary feasibil i ty study, under the sponsorship of SNSO, 

The specific goals of this study are to is in progress  at NBS-Boulder. 

1 )  calculate the freezing and melting rates of hydrogen for  various 

geometries,  refr igerant  temperatures ,  and re f r igerant  hea t  t r ans fe r  
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coefficients,  2 )  to measu re  hydrogen freezing and melting rates for a 

s imple  geometry such as a cylinder, and 3 )  to develop freezing tech-  

niques which yield a uniform and high density solid. 

Should this study prove that preparation and thawing of solid 

hydrogen is feasible and predictable, we must  be prepared to make 

miss ion  design tradeoffs, i. e., do the advantages of using solid hydro- 

gen outweigh the disadvantages. 

disadvantages will consis t  most ly  of increased handling complexity and 

re f r igera t ion  costs  (for solidification of H ). 

t e r i s t i c s  of solid hydrogen in a space environment a r e  of paramount 

in te res t  to us and the remainder  of this paper is devoted to  that topic. 

2. STORAGE CHARACTERISTICS O F  SOLID 
HYDROGEN I N  A SPACE ENVIRONMENT 

At this point it is believed that the 

Thus, the s torage charac-  
2 

A c u r s o r y  examination of the l i t e ra ture  indicates that  studies 

have concentrated on the s torage of liquid hydrogen in a space environ- 

ment, while s lush and solid hydrogen have drawn little attention. This 

is understandable because it has not yet been demonstrated that s lush  

o r  solid hydrogen can be safely and easi ly  handled in la rge  quantities. 

The 'apparent '  advantages [21 of slush o r  solid hydrogen provide a 

strong stimulus to extend existing propellant management technology 

to these higher density propellants. 

the advantages of solid hydrogen as a propellant for  lunar and in t e r -  

planetary missions,  we will  examine the s torage charac te r i s t ics  of 

solid hydrogen in a space environment. 

S o  that we may  c lear ly  appreciate 

To obtain est imates  on the s torage durability of solid hydrogen 

we mus t  specify the s torage conditions. This requi res  detailed know- 

ledge concerning so lar  radiation flux, albedo, planet-shine, insulation 

quality, reflective coatings, vehicle attitude control, vehicle geometry, 

propellant tank vent p re s  sure ,  etc. These conditions will obviously 
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vary  with each mission, i. e . ,  whether the vehicle operates  in ear th  

o r  lunar orb i t  o r  interplanetary space.  

each of the foregoing pa rame te r s  and per form a pa rame t r i c  study; 

however, because of the prel iminary nature  of this paper we shall 

r e s t r i c t  our attention to a few simple examples that adequately bracket  

the storage problem. 

orbi t  storage and then interplanetary space storage.  

2. 1 Ea r th  orbi t  s torage 

We shal l  a rb i t ra r i ly  specify that the earth orb i t  is x 100 

This orb i t  is chosen so  that we may  

W e  could systematically vary 

First we shall consider relatively low ear th-  

(- 185 km) nautical miles. 

simplify our calculations by considering the vehicle environment as 

an infinite sink for  both radiant  heat flux and gaseous hydrogen venting, 

i. e. ,  1) outer space is considered an infinite black void with an 

effective temperature  of 

will not be reflected back to the vehicle. 

reason for choosing an orbi t  of 100 nautical miles. At this altitude 

the mean f r ee  paths of the atmospheric constituent gases  a r e  la rge  

enough [5 ]  to a s su re  r a r e  collisions with the vehicle and gases  escaping 

f rom the vehicle. 

10 

gases  a r e  about 100 meters .  

ca ses  for  ear th  orbi t  storage.  

4 K and 2)  gas molecules leaving the vehicle 

The la t te r  point is the real 

Atmospheric p r e s s u r e  at this altitude is  about 
- 6  t o r r ,  and the corresponding mean f r e e  paths of the atmospheric 

We sha l l  now examine three separa te  

Case  I: 

for  well insulated spacecraf t ,  will reduce so la r  radiation, albedo, e tc . ,  

to - 10 W/cm net heat flux to the s tored  cryogen. Solar radiation 

plus albedo is normally taken as about 0 .2  W / c m  incident hea t  flux. 

Thus, - 0.05 of one percent of the incident heat  flux is absorbed by 

the cryogen. 

br ium temperature  is normally around 300 K. 

We shal l  assume that the cu r ren t  state-of-the-art  technology, 

-4 2 

2 

Experience indicates that  so la r  -shielded vehicle equili- 

Using a multi layer 
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insulation (15 to 20 l a y e r s / c m )  of 5 c m  thickness, the net heat  flux 

should not exceed 10 

shielded s ta te  -of-the-art  multilayer insulation, spinning-vehicle 

attitude control, no refr igerat ion devices onboard, and the cryogen 

is s tored (vented) a t  - 1. 6 a tm absolute pressure.  We shall fur ther  a s sume  

that the thermal  energy (10 

out the bulk of the s tored cryogen. 

hydrogen will be taken at 13 K, just below the t r iple  point (13. 80 K). 

-4 2 
W/cm . Then for this case ,  we assume so la r -  

-4 2 W/cm ) is uniformly deposited through- 

The temperature  of the solid 

It will be instructive, for  this case ,  to compare the relative 

m e r i t s  of subcooled liquid, slush,  and solid hydrogen. The change in 

enthalpy for  these various physical phases of hydrogen propellant are 

given in table 1. 

a r e  quite apparent for both the zero-loss and vented-tank conditions. 

F o r  a specified net heat f lux  the storage t ime is direct ly  proportional 

to  the available enthalpy change as indicated in table 1. 

hydrogen has a s torage durability of 567. 8/453. 9 1.25 t imes that of 

NBP liquid hydrogen. Perhaps  more importantly, solid hydrogen will 

endure 132, 1/18.2 NN 7 t imes as long as  NBP liquid hydrogen before 

overboard venting is required. 

The advantages of using subcooled o r  solid hydrogen 

Thus solid 

Next we examine the improvement in bulk density with solidifi- 

cation. 

density as  the liquid hydrogen i s  subcooled o r  partially /totally solidi-  

fied. Thus, m o r e  hydrogen can be packed onboard volume-limited 

vehicles such as the shuttle cargo tank. Approximately 23 percent 

m o r e  fuel m a s s  could be transported, in a given s ize  tank, i f  solid 

hydrogen is used ra ther  than N B P  liquid hydrogen. 

Again, f rom table 1 there is a significant increase in bulk 

F r o m  the foregoing discussion, we s e e  that a solid hydrogen 

fueled vehicle could thaw and burn 23 percent  of its cargo and still 

re ta in  a storage durability that exceeds (by 25 percent) an identical 

liquid ( NBP) hydrogen fueled vehicle. 
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Tahlc 1. Tahu1atc:tl values of bulk hca t  capaci t ies  and corresponding 
s torage  durabili t ies for  various physical fo rms  of hydrogen. 

Physical  form* 
of hyd r ogen 
( a s  launched) 

saturated liquid 
@ 1 atrn ( N B P )  

Column 1 Column 2 Column 3 Column 4 Column 5 
3 

(days)  
/ w-s w-s 

(days) (7) (7) ( g h m  1 

18.2 453.9 0.071 73 1812 

1 71.8 I 507.5 I 0.077 I 287 I 2026 t r iple  point 
liquid 

132. 1 
100% solid 
(@ 1 3 K )  

50% solid 
(s lush)  

567.8 0.087 527 2267 

Column 1: Available enthalpy change from the enthalpy state of HZ, 
as launched, to the enthalpy s t a t e  of saturated liquid H2 
@ 1. 6 a t m  (22 K),  i. e., no venting (zero- loss  s torage  of Hz). 

Column 2: Available enthalpy change of column 1 plus the la tent  heat of 
vaporization at 1.  6 atm (22 K), i. e . ,  energy absorbed pe r  
g r a m  of H2 vented. 

Column 3: 

Column 4: 

H2 density (as launched). 

Storage duration for zero- loss  of H2 (no overboard venting). 

Column 5: Maximum s torage  duration fo r  total vaporization of liquid 
and/or  solid H2 (tank vents at 1 .  6 atm). 

:::Note: It is assumed that the same mass of H2 is launched, 
i r respec t ive  of the physical form. 

. 
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To obtain est imates  of actual s torage times, we must  specify 

the tank volume and its thermally irradiated a rea .  

ra t io  var ies  widely with mission, orbit, attitude control, etc. We 

will a s sume  a cylindrical  tank configuration with L / D  = 4 and broadside 

the rma l  i r radiat ion,  i. e . ,  the thermally i r radiated area is LD. This 

is a wors t  case,  as the tank would optimally be positioned so  that the 

exposed area is rrD /4. Assuming a tank d iameter  of about 7 m e t e r s  

we calculate a volume/area  rat io  of- 500 cm /cm . 
f l u x  of 10 W/cm , we find that 10  watts of t he rma l  energy a r e  

delivered to 500 c m  

gen at 1. 6 atm is 0.  069 g / c m  ; therefore,  10 watts a r e  delivered to 

0.069 x 500 = 34. 5 g rams  of hydrogen. Now, by using the heat  capacity 

da ta  in  column 2 of table 1, we m a y  calculate the time required to 

totally vaporize the hydrogen propellant. F o r  solid hydrogen this time 

i s  M 2267 days ( see  column 5 of table 1). F r o m  table 1 we note that 

567. 8 ( W - s )  a r e  required t o  vaporize a g r a m  of solid hydrogen, but 

132. 1 ( W - s )  /g  may be absorbed without l o s s  of propellant. 

gen m a y  be s tored for  (132. 1/567,8) x 2267 = 527 days without loss  of 

propellant i f  13 K solid is placed i n  orbit. Storage t imes for  the s lush 

and liquid propellants a r e  proportionally lower as indicated by the data  

in table 1. 

This vo lume/area  

2 

3 2 
Using a net heat  

-4 2 -4 

3 of cryogen. The density of saturated liquid hydro- 
3 -4 

Then hydro- 

Case  2: 

a tmosphere,  in a 100 nautical mile ear th  orbit .  

s torage  are identical to those of Case 1, except that the tank is vented 

to  - 10 

tank were  inadvertently o r  intentionally vented to the atmosphere.  

Table 2 indicates the saturation vapor p re s su re ,  specific enthalpy, 

density, and heat  of sublimation of solid hydrogen at various tempera-  

tu res .  It is readily apparent that the vapor p r e s s u r e  is extremely low 

Next we consider the storage of solid hydrogen, vented to the 

The conditions of 

- 6  to r r .  This s torage condition would be imposed i f  the s torage 
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Table 2: Tabulated proper t ies  of solid hydrogen 

P r e s s u r e  
( t o r r )  

13.803 

13.00 

12.00 

11.00 

10.00 

9.00 

8.00 

7.00 

6.00 

5.00 

4.00 

3.00 

2.00 

1.00 

52.8 

30. 1 

13. 8 

5. 6 

1.9 

. 5 3  

. l l  

1. 56 x 

1.20 

3.57 

2.08 

4.83 x 

3.99 x 10 

8.26 x 10 

-18 

- 39 

Heat of 
Sublimation 

508 

503 

495 

487 

478 

4 69 

4 60 

450 

440 

430 

420 

409 

399 

3 89 

Specific 
Enthalpy 

10. 6 

8 .4  

6.2 

4.4 

3.1 

2.0 

1 .3  

0.7 

0 .4  

0.2 

0.1 

0.02 

0.005 

0.0003 

Density 

(g  /cm3):: 

~~ 

0.08663 

.08686 

.08716 

.08743 

.08768 

.08793 

.08816 

.08839 

.08861 

.08882 

.08904 

,08925 

.08946 

.08967 

* - Extrapolated f rom ref [6]. 
re fe rences  [6, 71. 

All da ta  in  this table taken f rom 
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. 
at tempera tures  below 4 K. 

declines with decreasing temperature.  

only 3 percent  between 13 K and 1 K. 

the solid is reduced by only 8.4 (W-s)/g between 13 K and 1 K. 

i nc rease  i n  heat capacity is only 1. 7 percent of the heat of sublimation 

at 13 K and only 1. 5 percent of the available enthalpy change between 

13 K and 22 K (column 2 of table 1). Thus, it is obvious that l i t t le is 

to be gained by intentionally reducing the solid temperature  below 13 K. 

Fur thermore ,  rejection of heat  by sublimation will resu l t  in  a grea te r  

l o s s  of propellant at the lower temperatures  (as a resu l t  of the lower 

heats  of sublimation). 

proceed with our sublimation calculation. 

Also, the heat of sublimation steadily 

Note that the density increases  

Also, the specific enthalpy of 

This 

The l a t t e r  point will become apparent as we 

Le t  us now consider the problem of solid hydrogen subliming 

in  a s torage  tank that is vented t o  a 10 t o r r  environment. As p re -  

viously explained, it is assumed that hydrogen molecules leaving the 

tank a r e  lost  forever.  We shal l  also assume that the flow conductance 

of the vent plumbing is sufficiently l a rge  to permi t  the hydrogen vapor 

p r e s s u r e  in  the tank to equilibrate near  10 

vapor interface exposed to the tank ullage will rapidly assume an 

equilibrium tempera ture  corresponding to - 10 to r r .  Some time 

will  then be required for  the bulk of the solid to attain thermal  

equilibrium at this lower temperature.  The solid block must  cool 

by thermal  conduction of internal  heat to  the solid-vapor interface 

where sublimation is taking place, 

t empera ture  some propellant will be vaporized - -  this loss of pro-  

pellant will be r e fe r r ed  to as 'flashing loss ' .  We shal l  assume that 

the t ime required to incur this flashing lo s s  is small in comparison 

to the in-orbit  s torage time. 

-6  

- 6  to r r .  Then the solid- 

-6 

In reaching this lower equilibrium 
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Additionally, we will requi re  that all thermal  energy is deposited 

at the subliming solid-vapor interface,  and that this radiant energy 

does not significantly affect this in te r face  temperature .  

we avoid thermal  conduction problems in the solid hydrogen and can 

perform a two-step steady state calculation. First we compute the 

'flashing lo s s ' ,  then the sublimation lo s ses  attributable to the steady 

s ta te  radiant heat  f lux .  

solid-vapor interface where the temperature  and heat of sublimation 

were  lowered at the instant the vent valve was opened. Effectively we 

a r e  assuming that all sublimation takes place isothermally at the r e -  

duced temperature ,  i. e. , an isenthalpic thermodynamic process  i s  assumed. 

In this way, 

All of these lo s ses  will be computed at the 

F r o m  table 2 we note that the equilibrium temperature  of 

t o r r  is about 4. 5 K. To allow 1) for  some -6 
solid hydrogen at  10 

temperature  r i s e  at the solid-vapor interface due to thermal  i r r ad ia -  

tion, a n d  2 )  for some res i s tance  to vapor flow through the vent 

valve, we se lec t  a temperature  of 5 K. 

the solid hydrogen between 13 K and 5 K is 8.2 (W-s)/g and the heat  

of sublimation at  5 K is 430 (W-s)/g. 

will be (8.2/430)100 = 1.9 percent, and 98.1 percent of the initial 

m a s s  remains to be vaporized at 5 K. 

The heat to be removed f rom 

Then the initial flashing loss  

-4 

With 

Following the same  procedure as in Case 1 we impose 10 
3 

watts of thermal energy on 500 ( .98 l )  c m  

a hydrogen density of 0.08882 g / c m  

(10-4)/(500 x .981 x 0.08882) = 2.3 x 10 

required to totally vaporize the solid hydrogen at 5 K is 430/(2. 3 x 10 

= 1.87 x 10 seconds, o r  2164 days. 

of solid hydrogen. 
3 

our thermal  flux is 
-6  

W/g. Then the t ime 
- 6  

) 
8 

While this storage t ime is lower than that of Case 1 the compari-  

son is not yet a d i rec t  one. In Case  1 we res t r ic ted  the initial m a s s  of 



, 

solid hydrogen to be identical with those for  liquid and s lush  hydrogen; 

therefore ,  we could make d i rec t  comparisons with liquid, subcooled 

liquid, and s lush  hydrogen storage.  

init ial  mass, as was used in Case 1, we obtain a s torage duration of 

1684 days - -  considerably l e s s  than the 2267 days for  Case  1. The 

1684 day s torage  t ime could have been derived by simply taking the 

ra t io  of available enthalpy change, i. e . ,  [(430 x . 9 8 l ) /  (567. 8)J  2267 = 

1684 days. 

Correct ing Case  2 to the s a m e  

I t  is apparent that vented storage of solid hydrogen in-orbit  

reduces s torage durability, and does not significantly improve the 

bulk density o r  bulk heat capacity of the hydrogen. 

Case  3: Here  we consider a l e s s  practical  ca se  where  a cylindrical  

chunk of unprotected solid hydrogen is floating in-orbit. 

problem would exis t  i f  unprotected solid hydrogen was t ransfer red  

through the atmosphere f r o m  one vehicle to another, o r  was awaiting 

rendezvous with a cargo  ship. We will  assume that no meteor i tes  o r  

atmospheric gases  collide with the solid hydrogen, and all sublimed 

hydrogen is los t  forever .  

Such a 

The cylinder of solid hydrogen will be t reated as a black body, 
2 absorbing the full radiant energy (- 0.2 W/cm ) of the sun, ea r th  

albedo, planet-shine, etc. The outside surface of the cylinder will 

quickly come to - 5 K and will, therefore, be incapable of appreciable 

radiation to space ( a t  - 4 K). 

- 2 percent,  we assume that all subsequent sublimation takes place 

a t  - 5 K .  Using the s a m e  data  as in  Case  2, and a thermal  hea t  flux of 

0. ?, W / c m  , we calculate a storage duration of 1.082 days. This brief 

s torage  interval resu l t s  because the net hea t  flux is 2000 times that of 

Case  2, i. e.,  [(O. 2)/(10 

Neglecting the initial 'flashing loss '  of 

2 

-4 
)]1.082 = 2164 days as in Case  2. 

A-11 



This shor t  s torage interval  implies that the m a s s  efflux of 

hydrogen, away f rom the cylindrical  solid, is sufficiently high to 

elevate the p re s su re  at the solid-vapor interface.  

p ressure ,  at  the subliming interface,  is accompanied by an increased 

temperature  in  the solid and a modest  increase  in the heat of vaporiza- 

tion; however, the s torage duration would be extended by not m o r e  

than 25 percent. 

the solid cylinder is rapidly reduced - -  this effect is f a r  m o r e  influen- 

tial than the modest increase  in heat of vaporization (sublimation) and 

resu l t s  in much shor te r  s torage t imes.  

ra t io  should m o r e  than compensate for  any increase  in heat of vapor- 

ization; therefore, the estimated s torage duration for  a cylinder of 

solid hydrogen, 7 m in diameter  by 28 m long, is approximately one 

day. 

Any increase  in 

As vaporization proceeds,  the volume/area  rat io  of 

The reduction in volume/area  

2 .2  Interplanetary space  s torage 

This section can be t reated r a the r  lightly because all of the 

groundwork has been completed. Case 1, for  example, transplanted 

into interplanetary space will be an identical problem, except that 

the net heat flux will be lower;  consequently, the s torage times will 

be longer. The exact s torage duration will vary with the position of 

the storage tank in space,  and the incident radiant energy. While the 

so l a r  radiation is inversely proportional to the square  of the distance 

f r o m  the sun, the s torage tank may  also be exposed to  appreciable 

planet-shine. Thus, in general ,  the s torage duration in space will 

exceed that computed for  Case  1 in ear th  orbit. 

For Case  2, in-space,  the net heat flux will be different and 

the environmental p re s su re  will be lower. 
-12 p r e s s u r e  is normally taken as  10 

and intergalactic space p r e s s u r e  is estimated at to 10 to r r .  

Interplanetary space 

to t o r r  in the so l a r  system, 
-16  

, 
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-12 
F r o m  table 2 we see  that 10 to 

t u re  of - 3 K in the solid hydrogen. 

2 where the solid hydrogen temperature  is 5 K. 

is decreased slightly between 5 K and 3 K, producing lower s torage 

t imes ;  however, the dec rease  in radiant heat f l u x  should more  than 

compensate for  this effect. 

durability, in-space, to exceed that of Case  2 in  ea r th  orbit. 

t o r r  will produce a tempera-  

We have already considered Case  

The heat of sublimation 

Then, for Case  2 we would expect s torage 

F o r  Case  3, in-space, we will again attain an equilibrium solid 

hydrogen tempera ture  of - 3 K. The s torage duration will be 1 /2000 

of Case  2 (in-space),  and would be expected to exceed that of Case  3 

in ea r th  orbit .  

F o r  Case  2, in-space,  the flashing lo s s  is slightly higher than 

F r o m  table 2 the flashing lo s s  in a 100 nautical mile  ea r th  orbit. 

between 13 K and 3 K is (8.4/409)100 = 2.05 percent. 

3. SUMMARY 

The significant advantages of subcooled liquid, slush,  and 

solid hydrogen, as  space s torable  propellants, a r e  made evident. 

Maximum storage duration of hydrogen propellant is obtained by using 

solid hydrogen and the maximum allowable tank vent p re s su re .  Maxi- 

mum 'no-loss '  s torage duration is also obtained by using solid hydro- 

gen. A comparison of s torage durability of subcooled liquid, slush,  

and solid hydrogen is given in table 1. 

The bulk density and heat  capacity of solid hydrogen a r e  not 

significantly increased by reducing the temperature  of the solid below 

13 K. 

decreased at  t empera tures  below 13 K. Thus, the s torage durability 

of solid hydrogen is decreased when it is s tored a t  space environment 

p re s su res .  

Conversely, the heat of sublimation of solid hydrogen is markedly 

An uninsulated cylinder of solid hydrogen, 7 m in diameter  

A-1 3 



by 28 m long, would vaporize in approximately one day in an ea r th  

orbi t  of 1 8 5  km. 

will require that the propellant be frozen in-place in well-insulated 

modular s torage units. 

Thus, it is apparent that the use of solid hydrogen 

A-14 
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